
Y2 Snapshot 0.6 of Monitoring Framework
This note gives a brief overview of the Year 2 snapshot 0.6 of the monitoring framework.

This release implements the basics of the framework as described in the previous
documents and discussions we have had. It is written in Java, and is available for anyone
to evaluate and modify.

There are implementations of the elements presented in the following model. A
DataSource acts as a control point and a container for one or more Probes. Each Probe
defines the attributes that it can send in a set of ProbeAttribute objects, that specify the
name, the type, and the units of each value that can be sent.

When a Probe sends a Measurement, the values sent are directly related to the Probe
Attributes.

The Probe sends each Measurement to the Data Source for transmission. The Data
Source passes these measurements onto the Data Plane, where they are encoded into an
on-the-wire format, and then sent over the Data Plane distribution network. The receiver
of the monitoring data decodes the data and passes reconstructed Measurements to the

Probe Value

Data Source

Probe

Probe Attribute

Measurement

Probe sends
Measurement
s to Data
Source

Basic
Consumer

Probe

Data Plane
Producer

Data
Source

Data Plane
Consumer

Data Plane.
Currently IP
multicast or UDP.

Measurements
passed to
Reporter

Reporter

monitoring consumer.

In this snapshot, the Data Plane implementation can be done using (i) IP multicast, or (ii)
as UDP. The distribution is independent of the core parts of the system, and can easily be
replaced by a different Data Plane distribution framework, such as publish/subscribe.

This implementation also supports the Info Plane and the Control Plane, as described in
the other monitoring documents. The Info Plane allows the receivers of Measurement
data to lookup the fields received to determine their names, types, and units. This data is
put into the Info Plane by the Data Sources or by the Service Manager. For this
implementation the Info Plane has the inclusion of a distributed information model using a
Distributed Hash Table (DHT). This DHT information model has nodes that use a separate
network to interact among one another.

Currently, the Control Plane has no implementation but the interface has been defined.
This will allow us to design and write a Control Plane plugin at a later date.

Structure

The implementation is structured with 12 main packages. They are presented in
alphabetical order below:

Packages Description

eu.reservoir.monitoring.appl This package provides classes that are at the application
level.

eu.reservoir.monitoring.appl.datarate This package provides classes that are used to specify
data rates for Probes in different ways.

eu.reservoir.monitoring.appl.host.linux This package provides classes that are used for Probes
that monitor Linux hosts.

eu.reservoir.monitoring.appl.vee.sge This package provides classes that are used for
monitoring the Sun Grid Engine (SGE) running inside a
virtual machine (VEE).

eu.reservoir.monitoring.core This package provides classes that are at the core of the
monitoring framework, including: Data Source, Probe,
Probe Attribute, Measurement, and Probe Value.

eu.reservoir.monitoring.core.list This package provides classes that are used for
embedding List data within a Measurement.

eu.reservoir.monitoring.core.plane This package provides classes that define the Planes of
the monitoring framework.

eu.reservoir.monitoring.core.table This package provides classes that are used for
embedding Table data within a Measurement.

eu.reservoir.monitoring.distribution This package provides classes that are used for
distributing measurement data with the framework.

eu.reservoir.monitoring.distribution.multicast This package provides classes for the implementation of
the Data Plane that utilizes IP Multicast for transmission.

eu.reservoir.monitoring.distribution.udp This package provides classes for the implementation of
the Data Plane that utilizes UDP for transmission.

eu.reservoir.monitoring.im.dht This package provides classes for the implementation of
the Info Plane that utilizes a Distributed Hash Table (DHT)

Testing

To test the framework as it stands so far there are some demo classes. These are in the
package: eu.reservoir.demo.

There are a few demos:

i) one that generates an emulated response time
ii) one that monitors the CPU usage, or network usage, or memory usage on a physical
host

They provide working examples of how Probes can be written, and how the system can be
glued together.

Demo i

Demo i is simple and just sends out an emulated response time from the
ResponseTimeEmulator, which acts as a data producer. It uses a simple Probe called
RandomProbe to generate these numbers. As a data consumer, there is a program called
SimpleConsumer, which receives the measurements and displays them.

The first task is to execute the following on one machine:

java eu.reservoir.demo.SimpleConsumer

This starts the data consumer.

The second task is to execute the ResponseTimeEmulator on the same machine, like so:

java eu.reservoir.demo.ResponseTimeEmulator

You should see response times info arriving at the SimpleConsumer.

In demo i, IP multicast is used as the Data Plane for the distribution framework. The
default address is 229.229.0.1/2299, but can be changed by passing a new multicast
address and port as arguments to these programs. For example:

java eu.reservoir.demo.SimpleConsumer 234.1.2.4 7777

and:

java eu.reservoir.demo.ResponseTimeEmulator 234.1.2.4 7777

Using UDP
There is a version of this demo that uses UDP for the Data Plane rather than IP multicast.
Try the following to test these:

java eu.reservoir.demo.SimpleConsumerUDP

and:

java eu.reservoir.demo.ResponseTimeEmulatorUDP

Looking at the code will show how the different Data Planes are set up.

Demo ii

This is a demo of utility usage monitoring on Linux boxes. It can use one of three Probes,
(i) a Probe called CPUInfo, which reads data from /proc/stat and sends CPU usage data
out, (ii) a Probe called NetInfo, which reads data from /proc/net/dev and sends network
usage data out, or (iii) a Probe called MemoryInfo, which reads data from /proc/meminfo
and sends memory usage data out. This demo uses a DataSource which is called
BasicDataSource, from the package eu.reservoir.monitoring.appl. It has all the
functionality require of a Data Source. The BasicDataSource is embedded in a program
called HostMonitor, and it acts as the data producer by connecting to a Data Plane using
an IP multicast implementation.

As a data consumer, there is a program called SimpleConsumer, which receives the
measurements and displays them.

To execute this demo requires one SimpleConsumer and one or more HostMonitors
running on various different machines.

The first task is to execute the following on one machine (say hostA):

java eu.reservoir.demo.SimpleConsumer

This starts the data consumer.

The second task is to execute the HostMonitor, and to decide which Probe to run. You run
both processes on the same machine or on different machines.
To run the CPU Info Probe, do this:

java eu.reservoir.demo.HostMonitor -c

To run the NetInfo Probe, do this

java eu.reservoir.demo.HostMonitor -n

To run the MemoryInfo Probe, do this

java eu.reservoir.demo.HostMonitor -m

You can run HostMonitors on as many machines as required.

You should see cpu usage, network usage, or memory usage info arriving at the
SimpleConsumer.

CLASSPATH

The classpath must include all of the classes in the packages mentioned here, plus the
dht.jar file.

