

An Analytical Tool for Performance Evaluation of Software Defined Services

Alfio Lombardo Vincenzo Riccobene Giovanni Schembra

DIEEI - University of Catania

Antonio Manzalini

Telecom Italia Strategy Future Centre

Presentation outline

- Paper motivation and reference scenario
- Network analytical framework
 - Model of an NFV node
 - Model of a non-NFV node
 - Model of the whole network
 - Derivation of performance parameters
- Case study
- Conclusions and future work

Motivation

- Service Providers and Network Operators need:
 - Flexibility in network deployment and management
 - A flexible and optimal provisioning of network functions and services could reduce equipment costs and allow to postpone network investments
 - New network functionalities, services and policies to increase dynamicity of the market
 - Reducing OPEX and CAPEX

SDN & NFV

SDN: Software Defined Networks

 Decoupling the software control plane from the hardware data plane (packets forwarding), and moving its logic to centralized controllers

NFV: Network Function Virtualization

 Virtualization of some network functions that can run on standard HW, and that can be moved and instantiated in various locations of the network

Network scenario

Network scenario

Network scenario

NFV Capabilities

- An "NFV node" is characterized by:
 - A standard hardware architecture (x86 commodity hardware)
 - A virtualization capable software architecture
 - A set of Virtual Machines (VMs) that run Network Functions (e.g. Routers, Firewalls, Load Balancer, ...)

Main goal and paper target

Analysis of the impact of the Network Function allocation

An analytical framework for performance evaluation of the network

Analytical framework

- Network topology
- Network Function allocation
- Traffic characterization

parameters

Network topology definition

- Let us consider the network represented by a directed graph G(V, E), where:
 - V is a set of vertices
 - E is a set of links among them

Let F be the set of functions deployed over the network

User traffic characterization

- User traffic is represented by a set S of flows, each characterized by the following items:
 - $\sigma_s \in V$ is the vertex that represents the source of the flow s
 - $\delta_s \in V$ is the vertex that represents the destination of the flow s
 - \circ f_s is the mean bit rate characterizing the flow s
 - $func_s$ is the set of functions required by the flow s

NFV node

An NFV node can be modeled as a set of queues, that belong to two categories:

• Functions Queue $\mathcal{Q}_{\scriptscriptstyle i,j}^{\scriptscriptstyle (F)}$

- They manage the access to the functions
- Their service rate depends on the CPU processing speed to process the relative function

• Output queues $Q_{i,h}^{(OUT)}$

- They manage the packet transmission on the output links
- Their service rate depends on the output bitrate

NFV node

Function Queues

$$\Lambda_{i,j}^{(F)} = \sum_{\forall k \in \Phi_{i,j}} \lambda_k$$
 Arrival Rate

 $\mu_{i,j}^{(F)} = p_{i,j} \cdot C_i^{(CPU)}$ Service Rate

Output Queues

$$\Lambda_{i,h}^{(OUT)} = \sum_{\forall k \in \Psi_{i,h}} \lambda_k$$
 Arrival Rate
 $\mu_{i,h}^{(OUT)} = C_{i,h}^{(NIC)}$ Service Rate

NFV node

 $\Phi_{i,j}$: set of flows routed through the node i and requiring the function j

Function Queues

$$\Lambda_{i,j}^{(F)} = \sum_{\forall k \in \Phi_{i,j}} \lambda_k$$
 Arrival Rate
$$\mu_{i,j}^{(F)} = p_{i,j} \cdot C_i^{(CPU)}$$
 Service Rate

Output Queues

$$\Lambda_{i,h}^{(OUT)} = \sum_{\forall k \in \Psi_{i,h}} \lambda_k$$
 Arrival Rate

 $\mu_{i,h}^{(OUT)} = C_{i,h}^{(NIC)}$ Service Rate

NFV node

 $p_{i,j}$: the CPU quota of i-th node assigned to VM (function) j

Function Queues

$$\Lambda_{i,j}^{(F)} = \sum_{\forall k \in \Phi_{i,j}} \lambda_k \qquad \begin{array}{c} \textit{Arrival} \\ \textit{Rate} \end{array}$$

$$\mu_{i,j}^{(F)} = p_{i,j} \cdot C_i^{(CPU)} \qquad \begin{array}{c} \textit{Service} \\ \textit{Rate} \end{array}$$

 $C_i^{(CPU)}$: the mean packet processing rate of the processor in the *i*-th NFV node

$$\mu_{ih}^{(OUT)} = C_{ih}^{(NIC)}$$

 $\forall k \in \Psi_{i,h}$

Service Rate

 $\Psi_{i,h}$: the set of flows crossing the node i and leaving it through the NIC h

NFV node

Function Queues

$$\Lambda_{i,j}^{(F)} = \sum_{\forall k \in \Phi_{i,j}} \lambda_k \qquad \begin{array}{c} Arrival \\ Rate \end{array}$$

$$\mu_{i,j}^{(F)} = C_{i,h}^{(NIC)}: \text{ the transmission rate of the } h\text{-th output link of the } i\text{-th NFV node}$$

Output Queues

$$\Lambda_{i,h}^{(OUT)} = \sum_{\forall k \in \Psi_{i,h}} \lambda_k$$
 Arrival Rate
 $\mu_{i,h}^{(OUT)} = C_{i,h}^{(NIC)}$ Service Rate

A non-NFV node can be modeled as a set of output queues, one for each output link

Output Queues

$$\Lambda_{i,h}^{(OUT)} = \sum_{\forall k \in \Psi_{i,h}} \lambda_k$$
 Arrival Rate
 $\mu_{i,h}^{(OUT)} = C_{i,h}^{(NIC)}$ Service Rate

non-NFV node

Markov model

- The whole network can be modeled as a network of queues
- Model definition: an *N*-dimensional continuoustime Markov chain whose state is defined as follows: $S^{(\Sigma)}(t) = (\underline{S}_1(t),...,\underline{S}_N(t))$

where
$$\underline{S}_{i}(t)$$
 is equal to:
$$\underline{S}_{i}(t) = \left(S_{i,1}^{(F)}(t), ..., S_{i,L_{i}^{(OUT)}}^{(F)}(t), S_{i,1}^{(OUT)}(t), ..., S_{i,L_{i}^{(OUT)}}^{(OUT)}(t)\right) \quad \text{(NFV Node)}$$

$$\underline{S}_{i}(t) = \left(S_{i,1}^{(OUT)}(t), ..., S_{i,L_{i}^{(OUT)}}^{(OUT)}(t)\right) \quad \text{(non-NFV Node)}$$

Markov model solution

Assumptions:

- Exponentially-distributed interarrival times
- Exponentially-distributed service times in both NF and OUT queues
- the routing algorithm is able to avoid closed loops

hypotheses of the Jackson theorem

the equilibrium probability distribution of the network has a product-form solution:

$$\underline{\underline{\boldsymbol{\pi}}^{(\Sigma)}(t) = [\underline{\boldsymbol{\pi}}_{1}, \dots, \underline{\boldsymbol{\pi}}_{N}] = \underline{\boldsymbol{\pi}}_{1} \cdot \dots \cdot \underline{\boldsymbol{\pi}}_{N}} \quad \underline{\underline{\boldsymbol{\pi}}}_{i} = \left(\underline{\boldsymbol{\pi}}_{i,1}^{(F)} \cdot \dots \cdot \underline{\boldsymbol{\pi}}_{i,L_{i}^{(F)}}^{(F)}\right) \cdot \left(\underline{\boldsymbol{\pi}}_{i,1}^{(OUT)} \cdot \dots \cdot \underline{\boldsymbol{\pi}}_{i,L_{i}^{(OUT)}}^{(OUT)}\right) \quad \text{if NFV}}$$

$$\underline{\underline{\boldsymbol{\pi}}}_{i} = \left(\underline{\boldsymbol{\pi}}_{i,1}^{(OUT)} \cdot \dots \cdot \underline{\boldsymbol{\pi}}_{i,L_{i}^{(OUT)}}^{(OUT)}\right) \quad \text{if non-NFV}$$

Markov model solution

Let us indicate:

• *Utilization coefficient* of the *j*-th NF queue in the node *i*

$$\rho_{i,j}^{(F)} = \frac{\Lambda_{i,j}^{(F)}}{\mu_{i,j}^{(F)}}$$

• *Utilization coefficient* of the *h*-th OUT queue in the node *i*

$$\rho_{i,h}^{(OUT)} = \frac{\Lambda_{i,j}^{(OUT)}}{\mu_{i,j}^{(OUT)}}$$

$$\pi_{i,k}^{(F)} = \lim_{t \to \infty} \text{Prob} \{ S_i^{(F)}(t) = k \} = [1 - \rho_{i,j}^{(F)}] \cdot [\rho_{i,j}^{(F)}]^k$$

$$\pi_{i,k}^{(OUT)} = \lim_{t \to \infty} \operatorname{Prob} \left\{ S_i^{(OUT)}(t) = k \right\} = \left[1 - \rho_{i,j}^{(OUT)} \right] \cdot \left[\rho_{i,j}^{(OUT)} \right]^k$$

Performance parameters

Probability that the VM j in the node *i* is not using the **CPU** quota assigned to it:

$$P_{i,j}^{(F0)} = 1 - \rho_{i,j}^{(F)} = 1 - \frac{\Lambda_{i,j}^{(F)}}{\mu_{i,j}^{(F)}}$$

Mean number of packets in the queueing systems

$$Q_{i,j}^{(F)}$$
 and $Q_{i,j}^{(OUT)}$

Mean sojourn time in the queueing system

$$Q_{i,j}^{(F)}$$
 and $Q_{i,j}^{(OUT)}$

$$|v_{i,j}^{(F)}| = \frac{\rho_{i,j}^{(F)}}{1 - \rho_{i,j}^{(F)}} |v_{i,j}^{(OUT)}| = \frac{\rho_{i,j}^{(OUT)}}{1 - \rho_{i,j}^{(OUT)}}$$

$$\left|W_{i,j}^{(F)}\right| = \left|\frac{\boldsymbol{\mathcal{V}}_{i,j}^{(F)}}{\boldsymbol{\Lambda}_{i,j}^{(F)}}\right| \quad \left|W_{i,j}^{(OUT)}\right| =$$

$$W_{i,j}^{(OUT)} = \frac{V_{i,j}^{(OUT)}}{\Lambda_{i,j}^{(OUT)}}$$

Performance parameters

• End-to-end delay for each flow

$$W_k^{(e2e)} = \sum_{i=1}^{N} \left[\sum_{j=1}^{L_i^{(F)}} W_{i,j}^{(F)} \cdot I_{i,j}^{(F)}(k) + \sum_{h=1}^{L_i^{(OUT)}} W_{i,h}^{(OUT)} \cdot I_{i,h}^{(OUT)}(k) \right]$$

where:

$$I_{i,j}^{(F)}(k) = \begin{cases} 1 & \text{if the flow } k \text{ uses the function } j \text{ in the node } i \\ 0 & \text{otherwise} \end{cases}$$

$$I_{i,H}^{(OUT)}(k) = \begin{cases} 1 & \text{if the flow } k \text{ leaves the node } i \text{ through the NIC } h \\ 0 & \text{otherwise} \end{cases}$$

CASE STUDY

ROUTING ALGORITHM

TARGET

finding the end-to-end path for each flow

REQUIREMENTS

- the first and the last nodes for each flow are the ingress and the egress nodes specified for that flow
- the path for each flow has to cross nodes implementing the functions requested by that flow

ROUTING ALGORITHM

SOME NOTATION

- C: reference link capacity
 - defined as the bandwidth of the link with the highest capacity in the network

All the link capacities are normalized with respect to C

ROUTING ALGORITHM

SOME NOTATION

 I_{ν}^{t} : Boolean characterization of the network function distribution

$$I_{v}^{t} = \begin{cases} 1 & \text{if the node } v \text{ implements the Network Function } t \\ 0 & \text{otherwise} \end{cases}$$

ROUTING ALGORITHM

SOME NOTATION

 I_{ν}^{t} : Boolean characterization of the network function distribution

$$I_{v}^{t} = \begin{cases} 1 & \text{if the node } v \text{ implements the Network Function } t \\ 0 & \text{otherwise} \end{cases}$$

 \boldsymbol{a}_{s}^{t} : Boolean characterization of the function requirements for network traffic

$$\alpha_s^t = \begin{cases} 1 & \text{if the flow } s \text{ requires the Network Function } t \\ 0 & \text{otherwise} \end{cases}$$

Routing Algorithm definition

ROUTING ALGORITHM

Routing algorithm output

$$y_{vw}^{s} = \begin{cases} 1 & \text{if the flow } s \text{ is allocated on the link } v \to w \\ 0 & \text{otherwise} \end{cases}$$

Routing algorithm target

Minimize

Sum of loads of all the links in the network

$$\sum_{s=1}^{S} \sum_{v \in V} \sum_{w \in V} y_{vw}^{s} \cdot f_{s}$$

Routing Algorithm definition

ROUTING ALGORITHM

Subject to:

$$0 \le y_{vw}^s \le 1$$

Possible values of the variables

$$\sum_{s \in S} y_{vw}^{s} \cdot f_{s} \leq M_{vw} \quad \forall v, w \in V$$

It ensures that no link carries more traffic flow than its capacity

$$\sum_{w \in V} y_{vw}^{s} = \sum_{w \in V} y_{wv}^{s} \quad \forall v \in V \text{ and}$$

$$v \neq \{w, \sigma_{s}, \delta_{s}\} \quad \forall s \in S$$

Flow-conservation constraint: it ensures that no flow is lost or created except for at the ingress and the destination nodes

Routing Algorithm definition

ROUTING ALGORITHM

Subject to:

$$\sum_{w \in V} y_{\sigma_s w}^s = 1 \qquad \forall s \in S$$

$$\sum_{v \in V} y_{v\delta_s}^s = 1 \qquad \forall s \in S$$

They ensure that the flow *s* enters the network through only one node, and leaves the network from only one node

$$\sum_{v \in V} \sum_{w \in V} y_{vw}^s \cdot a_s^t \cdot I_w^t \ge 1$$

$$\forall s \in S, \ \forall t \in F$$

It ensures that each traffic flow crosses the nodes which implement the required functions

Case study: network topology

Network topology: Case 1

Network topology: Case 1

Case 1 results

Only F7 and F8 flows are affected by the Node 2 processing rate because they require functions C and D (that reside on the node 2)

Network topology: case 2

The functions are partially allocated on the aggregation nodes and partially on the Data Centers.

This case stresses both the aggregation nodes processing capacity and the network.

Case 2 results

Only F7 is (lightly) influenced by the Node 2 processing rate because it requires the function C

F4, F6 and F8 suffer a higher delay because they have to reach destination in the A2 cloud and, at the same time, need to be processed by the aggregation nodes.

Network topology: Case 3

In this case we have stressed:

- Network portion between aggregation nodes and core network
- Processing capacity of Node 2

This case stresses both the aggregation nodes processing capacity and the network.

Case 3 results

Now [F2, F3, F5, F6] and [F7, F8] flows are influenced by the Node 2 processing rate because:

- [F2, F3, F5, F6] require function B
- [F7, F8] require functions C and D

[F7, F8] suffer the same delay

Network topology: case 4

In this case we reduced the processing load of node 2, more stressing the network

Case 4 results

Now all the flows are less influenced by Node 2 processing capacity variation because Node 2 is less overloaded.

Case comparison

Let us use the model to find the best function allocation

Cases 3 and 4 are the best cases.

The case 2 it the most unfair and present the worst case in terms of mean end-to-end delay

Data Center A

Data Center B

Conclusions

- A telecommunications network with NFV capabilities has been considered
- An analytical framework of the network has been defined
- The model applicability has been demonstrated in a case study

Future work

- Accurate model of a single NFV node
 - Markov model of all function queues capturing their correlated behaviors
- Definition and evaluation of routing algorithms specific for NFV networks
 - A centralized constrained routing algorithm could optimize the traffic allocation with respect to the function allocation
- Function allocation policies

Future work

- Function Migration techniques
- Analytical model of the transient period during function migration
- Definition of green techniques for NFV networks
 - Global approach (e.g. path aggregation and specific function allocation)
 - Local approach (e.g. frequency scaling in node processors)

