
Hi Stuart,

Here is the output of my control application:
How does the output of your code get into mine.

It seems there is a major component missing.

We need some kind of controller which takes your info and creates the topology you want.

That’s right. In the worst case we need some simple scripts. What I need from you is some interfaces that allow your infrastructure to be controlled.

I was under the impression I was writing an aggregation point, which takes a stream of messages and creates a new stream of some aggregated data.   For example, CPU load coming in once per second will be aggregated to average CPU load once every 30 seconds.

This component is still being written, and I am making good progress.

Yes, this is right.

Also, as we discussed, I have also written some code that measures the amount of measurement data being sent to a multicast address (in packets, and in bytes).

Please note that protocol overhead should be coupled with the number of hops (e.g., 100B/sec that cross two hops is considered more overhead than 100B/sec that cross one). You can use metrics like overhead/hop. 

In terms of VM monitoring for the topology info, I am rewriting the VM probe from previous version (for the 3rd time) in order to overcome the horrible instabilities in libvirt.  Again, progress is being made.  Unfortunately, this VM monitor is not real research its just busy work trying to overcome someone elses bugs - and it’s taking a long time.
I would suggest to avoid using this component now. You can just execute an xm list command and parse the output. Only physical hosts need to give topology information. 
Topology Configuration

	Parameter
	Description
	Example

	int PhysicalNodesNumber
	Number of physical nodes. In our case, 6.
	6

	n-tuple VirtualMachinesNumber
	Number of Virtual Machines per physical node
	(10,10,10,10,10,10)

10 VMs per Physical Machine


Monitoring Configuration

	Parameter
	Description
	Example

	n-tuple InformationSources
	Information sources (physical machine number, virtual machine number)
	(2,3),(3,4)

Third VM of 2nd Physical Machine and Forth VM of Third Physical Machine.

	2-tuple ManagementApplicationLocation
	Location of the Management Application
	(2,0)

Second Physical Host

	2-tuple AggregationPointLocation
	The location of the Aggregation Point
	(2,3)

Third VM of 2nd Physical Host

	string AggregationFunction
	The name of the Aggregation Function
	AVG5

Average of the last 5 values

	string MonitoringProbeName
	The name of the probe:

CPU, Memory, CPU+Memory, Topology.
	Topology

	int MonitoringFrequency
	Frequency of monitoring:

0: Disabled

1: One time

2: On change

3: Periodically
	2

	int MonitoringPeriod
	Period of monitoring (only if MonitoringFrequency=3)
	0.1 sec


For example, you just need the following two strings from my side:

topologyconfiguration = “(3, (5, 5, 5))”

monitoringconfiguration = “((1, 1), (1, 2)), (2, 0), (3, 0), “MIN”, “CPU”, 1, 0”

Is this format fixed, or can I suggest some slightly different formats.

Don’t worry I won’t suggest anything involving XML, even though some people think it would be an ideal candidate for this :-)

Of course, please feel free to suggest changes.

This example, creates a topology with 3 physical machines. 5 VMs are started on each physical machine.
I think we might need a bit more info for these configurations, such as the VM names to start.
Why not having names VM1-VM64 (virtual machines) and PM1-PM6 (physical machines). We could use a naming like VMx.y (i.e., x the physical machine number and y the virtual machine number, where for physical hosts y=0). However, we need scenarios with migrating VMs. So, naming should be decoupled from the physical location.
The monitoring configuration is the following:

The first two VMs of the first physical machine monitor their local CPU usage once. They transmit data to the second physical machine which hosts the aggregation point. The aggregation point uses the MIN aggregation function. The result is transmitted to the Management Application which is hosted by the third virtual machine.
There is no reason to aggregate if the probe gets the data once.  Surely aggregation is only useful to reduce a stream of data into a smaller stream.  Also, if you send the data once, you cannot get any updates.  This kind of one-off monitor is fine for sending CPU info like the kind of CPU and the GHz it runs at, but not run-time usage.
It is an example. We won’t have a scenario like that.
I hope the above is clear ;)
Nearly.
Regards,

Lefteris

p.s. Please write me couple of lines on the status of your work.  
The structure of the objects in aggregation point is below.  The ones in blue are done, and I’m in the middle of the green ones.

Here is the functionality:

Collector - collects measurements from the input

Selector - selects some measurements, e.g last 5, or 30 mins back from now, and produces a list of numbers

Aggregator - aggregates the list of numbers into a single result

Forwarder - forwards the result as a new measurement

Aggregation Specifier - specifies what aggregation function to do, e.g avg(), and when to do it 

Aggregation Controller - takes the aggregation specifier and executes the aggregation.  At the specified time it selects the relevant data from the collected measurement, and applies the aggregation function.  It then forwards the result.


[image: image1]
That’s good I agree. Please try to include a filtering box in the picture, controlled from the aggregation controller. 

What do you think about having a skype meeting on Wednesday? 

I hope this makes sense to you.

Stuart
The controller application that I am implementing needs to reconfigure/adapt the Information Management Overlay based on the following:

One of the three example general guidelines:

· Optimize response time
· Optimize Resource usage (i.e., cpu & memory)
· Optimize Network usage
The location and the number of aggregation points (e.g., maybe the filtering level too) need to consider the following:

· topology size (i.e., small, medium or large).
· whether the topology is static or dynamic.
· the general guideline.
Some examples are the following:

High level guidelines:

Optimize 


•
Response Time


◦
Static


▪
Small topology → Hotspot, Large number of AP


▪
Medium topology → Hotspot, Large number of AP


▪
Large topology → Greedy, Large number of AP

◦
Dynamic


▪
Small topology → Hostspot (bootstrap), Greedy, Large number of AP


▪
Medium topology → Greedy, Large number of AP


▪
Large topology → Greedy
•
Network Usage


◦
Static


▪
Small topology -> Hotspot (bootstrap), Large number of APs


▪
Medium topology


▪
Large topology

◦
Dynamic


▪
Small topology


▪
Medium topology


▪
Large topology
•
Resource Usage


◦
Static


▪
Small topology -> Hotspot, Small number of APs


▪
Medium topology


▪
Large topology

◦
Dynamic


▪
Small topology


▪
Medium topology


▪
Large topology
Selector





Output Network





M





Input Network





M





AM





Aggregator





Aggregation Specifier





Forwarder





M





Aggregation Controller





Collector








