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Abstract—There has been recently an increasing research in-
terest in network management infrastructures that autonomously
adapt to the dynamics of environment. In this paper, we
present an information management platform, called Information
Management Overlay (IMO) as an infrastructure that regulates
information flow based on the properties and configuration of the
network environment. We also discuss the design, implementation
and optimization issues of this platform. Furthermore, we explore
experimentally how IMO can adapt to different configurations
and optimization requirements

I. INTRODUCTION

A key issue in the network management for the Future
Internet is the development of a common control space, which
has autonomic characteristics and enables heterogeneous net-
work technologies, applications and network elements to in-
teroperate efficiently. The management applications need to
be adaptable to the rapidly changing environment, such as
the specific network properties, the service and user require-
ments. This implies that management applications and network
entities should be supported by a platform that collects,
processes, and disseminates information characterizing the
network environment. An increased awareness for the generic
and specific properties of the network may bridge the gap
between the specific technical details of the network entities
and the high-level management goals. Here, we consider an
infrastructure that manages information flow and processing
within the network as an important stepping-stone towards this
vision.

Key design requirements of an information management
infrastructure are: (i) the information collection from the infor-
mation sources (e.g., the network devices), (ii) the information
processing that produces different information abstractions,
(iii) the information dissemination to the entities that exploit
that information, (iv) the information flow optimization with
respect to the specific requirements of the underlying network
(e.g., topology properties) and the high-level management
objectives in the system. The design of such a system is
challenging because it should be able to:

• self-adapt to different configurations and network prop-
erties, e.g., to regulate information flow, information
accuracy or monitoring configuration, accordingly.

• support self-management functionalities, i.e., to receive
decisions autonomously that can be harmonized towards
common goals.

• scale efficiently, at least, up-to the level of the adminis-
trative domains that are exploiting such information.

The above characteristics should be exhibited without human
intervention and with minimum management overhead.

It is common that such design approaches (e.g., [1], [2])
have a hierarchical structure and aggregate information using
aggregate functions, such as SUM, AVERAGE, MIN or MAX.
Consequently, the real-time monitoring of network parameters
may introduce significant communication overhead, especially
for the root-level nodes of the aggregation trees. We argue that
information flow should adapt to the information management
requirements and the constraints of the network environment.
For example, the location of the aggregation points (APs)
significantly impacts the associated overhead. Consequently,
the IMO-nodes may dynamically change position in order to
adapt to changes in the network environment, e.g., changes
in the information collection configuration. Here, we explore
the self-adaptation behavior of the IMO infrastructure in
different conditions. A special component, the IMO Controller,
is responsible for performing adjustments of the information
flow whenever the network environment requires it.

In this paper, we pay particular attention to the control
requirements of the IMO infrastructure, highlighting that the
IMO incorporates policy-based management functionalities
in the IMO Controller. We give examples of performance
requirements and how local optimization algorithms can be
harmonized towards them. For example, a requirement for
minimum network overhead may lead to a different aggre-
gation graph from a requirement to minimize CPU utilization.
We discuss algorithms that are able to: (i) self-adapt to
the environment, and (ii) be harmonized towards common
goals. In this context, we evaluate different optimum IMO-
node placement algorithms with respect to the optimization
requirements.

We have implemented and evaluated the proposed IMO in-
frastructure in different scenarios using both real experiments
and simulations. Our experiments cover different topology
scales, different information collection / aggregation con-
figurations, and information flow adjustments. We explore
how different performance trade-offs (e.g., processing cost vs
communication overhead) can be related to IMO configuration.
We show results associating information flow optimization al-
gorithms with example performance requirements. The results
presented are very promising and call for further investiga-
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tions.
This paper is structured as follows: section II presents

the related work; section III details our proposal; section
IV presents our experimental results; section V discusses
important aspects of our work and presents several open issues;
and section VI concludes the paper.

II. RELATED WORK

The Information Management Overlay is a basic component
of the autonomic management architectural model proposed in
the Autonomic Internet (AutoI) project [3], [4]. The AutoI
project [3], [4] aims to develop a self-managing resource
overlay that spans across heterogeneous networks and supports
service mobility, security, and quality of service. The IMO
realizes the core functionalities of the Knowledge Plane in an
architecture such as AutoI [4].

The IMO is a focused-functionality Knowledge Plane that
supports the management applications with the necessary
information towards the realization of self-management capa-
bilities. It is different from the Knowledge Plane proposed
in [5], which is a unified solution that includes cognitive
techniques and knowledge management. The IMO decouples
information management from the other network management
functionalities. These other functions are considered to be part
of either the Management plane or the Orchestration plane,
especially within the AutoI architecture [4].

In [6] the authors present specific implementation details
of a knowledge plane architecture that consists of a network
knowledge plane (NetKP) in the network layer, and of multiple
specialized KPs (spec-KPs) on top of it. Their architecture is
built using static agents. In our case, the IMO uses dynamic
nodes that may change position dynamically for the purpose
of information optimization.

Most autonomic computing platforms are targeted to stable
systems with sufficient resources [7], [8]. There are a limited
number of approaches that are focused on dynamic environ-
ments, such as MANETS [9]. In [9], the authors propose a
context-aware system driven by policies that can be tailored
towards high-level goals through policy modification. The re-
configurable context-sensitive middleware (RCSM) [10] deals
with context awareness in mobile devices assuming reliable
underlying ad hoc transport protocols. In [11] the authors
introduced a collaborative context determination approach op-
timized for MANETs. In this approach, a mobile node gains its
context information from its neighboring peers. These studies
are focusing on specific environments (i.e., infrastructureless).

The Aura project [12] associates accuracy and confidence
values to context information and is optimized for ubiquitous
environments. Other approaches that address the fundamen-
tal trade-off between information accuracy and management
overhead include GAP [1], A-GAP [2], and [13], [14]. The
information collected is usually aggregated using functions
such as SUM, AVERAGE, MIN, and MAX. The GAP [1] and
A-GAP [2] protocols are generic aggregation protocols with
controllable accuracy. These approaches adjust the level of
accuracy based on the constraints of the network environment.
For example, resource-limited sensors may trade information
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Fig. 1. The IMO Architecture

accuracy for extended network lifetime. In our proposal, infor-
mation accuracy is complemented with other parameters that
adapt the information flow to the network environment, i.e.,
the number of APs and the structure of the overlay topology.

The design of an autonomic management architecture for
the Future Internet needs to overcome many challenging
problems that include an efficient representation and deriva-
tion of knowledge, the incorporation of cognitive techniques,
security issues, information flow optimization, compatibility
with legacy hardware and software, resolution of knowledge
conflicts, etc. The detailed characteristics of an infrastructure
that supports similar architectures with information, with par-
ticular focus on information flow optimization, are presented
in the next section. Key requirements are the optimization of
the information flow and the dynamic placement of IMO-nodes
with respect to management overhead and resource utilization.

III. THE INFORMATION MANAGEMENT OVERLAY

The Information Management Overlay consists of the IMO
Controller and a number of IMO-nodes placed in different
points in the network, forming a hierarchy. The Management
Application interacts with the IMO Controller and specifies
its information requirements (see Fig. 1), e.g., the information
sources, the type of information, the monitoring rate, the ag-
gregation function etc. Furthermore, it specifies a perfomance
requirement, e.g., to optimize network overhead or processing
cost. The IMO Controller performs overlay-wide control of the
platform, takes and enforces decisions through communicating
with the appropriate IMO-nodes, in order to satisfy the above
requirements.

The IMO-nodes may have one of the following roles: (i)
to collect information, acting as Information Collection Points
(ICPs), (ii) to aggregate information, acting as Information
Aggregation Points (IAPs), or (iii) both, acting as Information
Collection & Aggregation Points (ICAPs). Our infrastructure
supports both optimum placement of IMO-nodes, and infor-
mation filtering based on accuracy objectives in order to adjust
the performance-related trade-offs.

The key factors that allow the IMO to be scalable, efficient,
and robust are the quantity and the placement of the IMO-
nodes. Since the IMO-nodes are a subset of the physical
nodes, each overlay topology should be carefully created,
based on algorithms that enable the optimum deployment of
the IMO-nodes in an autonomic way. One key requirement of
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Fig. 2. Autonomic IMO structure adaptation

Fig. 3. Structure of Information Collection Points

the architecture is that the overlay topologies should be self-
adaptive to the changes in the network environment. As an
example of this, an Information Aggregation Point (IAP) may
change location if the set of the Information Collection Points
(ICP) changes. Figure 2 shows how this self-adpation works.
In the left of Fig. 2 we see 6 nodes (A-F) together with 2
ICPs (at node A and at node B) and an IAP at node C. In the
right of Fig. 2 a new ICP is deployed to node F. This change
to the environment triggers the re-deployment of the IAP to
a new position, namely from node C to node D. The traffic
generated from the three ICPs will now be balanced.

We detail below the different IMO components, i.e., the
Information Collection Points, the Information Aggregation
Points and the IMO Controller.

A. The Information Collection Points (ICPs)

The Information Collection Points act as sources of infor-
mation: they monitor hardware and software for their state,
collect configuration parameters, or present capabilities. The
IMO supports three types of monitoring queries to an ICP,
they are: (i) the 1-time queries which collect information that
can be considered static, e.g., the number of CPUs, (ii) the N-
time queries which collect information periodically, and (iii)
the continuous queries that monitor information in an on-going
manner.

The location of the ICPs should be as close as possible to the
corresponding real sources of information in order to reduce
management overhead. Filtering rules and accuracy objectives
should be applied at the ICPs, especially for the N-time and
continuous queries, for the same reason. Furthermore, the ICPs
should not be many hops away from the corresponding IAPs.

In Fig. 3 we see the structure of an Information Collection
Point which we have designed and built for our own Infor-
mation Management Overlay platform. The ICP consists of
5 mains components, i.e., the sensors, a reader, a filter, a
forwarder and an ICP controller, which are described below.

The sensors can retrieve any information required. This can
include common operations such as getting the state of a server
with its CPU or memory usage, getting the state of a network
interface by collecting the number of packets and number of
bytes coming in and out, or getting the state of discs on a sytem
presenting the total volume, free space, and used space. In our
implementation each sensor runs in its own thread allowing
each one to collect data at different rates and also having the
ability to turn them on and off if they are not needed.

The reader collects the raw measurement data from all of
the sensors of an ICP. The collection can be done at a regular
interval or as an event from the sensor itself. The reader
collects data from many sensors and converts the raw data into
a common measurement object used in the IMO framework.
The format contains meta-data about the sensor and the time
of day, and it contains the retrieved data from the sensor.

The filter takes measurements from the reader and can
filter them out before they are sent on to the forwarder.
Using this mechanism it is possible to reduce the volume
of measurements from the ICP by only sending values that
are significantly different from previous measurements. For
example, if a 5% filter is set, then only measurements that
differ from the previous measurement by ±5% will be passed
on. By using filtering [15] in this way, the ICP produces
less load on the network. In our case, the filtering percentage
matches the accuracy objective of the management application
requesting the information.

The forwarder sends the measurements onto the network.
The common measurement object is encoded into a network
amenable measurement format. The measurements are en-
coded using XDR [16] as a way to minimize the size of
the transmitted data. The XDR format is commonly used
in monitoring systems [17] in order to reduce the network
loading.

The ICP Controller controls and manages the other ICP
components. It controls (i) the lifecycle of the sensors, being
able to turn them on and off, and to set the rate at which they
collect data; (ii) the filtering process, by changing the filter or
adapting an existing filter; (iii) the forwarder, by changing the
attributes of the network (such as IP address and port) that the
ICP is connected to.

For the IMO platform we have developed various sensors
which can measure attributes from CPU, memory, and network
components of a server host. We can also measure the same
attributes of virtualized hosts by interacting with a hypervisor
to collect these values. Finally, we have sensors that can
send emulated measurements. These are useful for testing
and evaluation purposes, with one example being an emulated
response time, which we use in our experiments.

B. The Information Aggregation Points (IAPs)

The Information Aggregation Points apply aggregation
functions to the collected measurement information. This
aggregation process increases the level of information abstrac-
tion, thereby transforming the data into a structured form,
but at the same time reducing the load on the network.
Aggregation works in situations where information consumers
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Fig. 4. Structure of Information Aggregation Points

do not need a continuous stream of data from an ICP, but
can get by with an approximation of the data. For example,
getting an occasional measurement with the average of the
volume of traffic on a network link may be enough for some
applications. Some common aggregation functions include
SUM, AVERAGE, STDDEV, MIN and MAX.

In Fig. 4 we see the structure of an Information Aggregation
Point which we have designed and built for our own Informa-
tion Management Overlay platform. The IAP consists of 7
main components, which include a collector, an aggregation
specifier, a selector, an aggregator, a filter, a forwarder and an
IAP Controller. All of these components are described below.

The collector collects measurement data from the network
and converts the XDR encoded measurement format into a
measurement object. After this the measurement objects are
saved in a data store for later aggregation processing. The data
store used in the IMO is the Timeindexing Framework [18],
[19] which allows any kind of data to be stored and retrieved
using timestamps or time intervals.

The Timeindexing Framework provides the mechanism by
which arbitrary sequences of measurements can be selected
and aggregated. It creates an index into the data, called a
timeindex, and provides an API for accessing the data. For
example, if the aggregator needs to aggregate the last 30
seconds worth of data it can create a time interval from now
back 30 seconds, and then ask the timeindex to get that data.
This time interval provides an abstract representation of time
(including representations for now and back 30 seconds), and
does not need to be specified with concrete times.

The aggregation specifier, the selector, and the aggregator
are actually combined into an aggregation engine. The aggre-
gation specifier specifies when the aggregator executes, what it
aggregates, and how it aggregates. These three specifications
are similar to those used in SLA compliance systems [20],
because the process of analysing the data is similar.

The when specification is of the form: wake up every N
seconds, which will cause the aggregation engine to wake up
regularly to provide an aggregation. The what specification
takes the form of a time interval, such as “from now, back 30
seconds”. The how specification is the name of a function to
aggregate the data, such as AVERAGE, SUM, etc.

The selector selects the required measurements to aggregate
using the what specification. It determines what data is eventu-
ally chosen by applying the time interval, such as “from now,

back 30 seconds”, to the timeindex and selecting the relevant
measurements. In this case it will cause the selector to select
the most recent 30 seconds worth of data. As the data store
uses timeindexing the time interval can be changed arbitrarily.
Once the selection is complete the selected data is passed to
the aggregator.

The aggregator aggregates the selected measurements pre-
sented by the selector. It uses the how specification to ag-
gregate data. Although it is most common to use aggregation
functions, such as SUM, AVERAGE, STDEV, MIN and MAX,
the IAP Controller can pass in an arbitrary function into the ag-
gregator in order to do the aggregation. This gives considerable
power and flexibility when determining aggregations. Once the
aggregation is calculated the aggregated measurement data is
passed to the filter.

The filter takes measurements from the aggregator and can
filter them out before they are sent on to the forwarder.
Again this reduces the volume of measurements by only
sending values that are significantly different from previous
measurements. Using filtering in this way in the IAP, like
filtering in the the ICP, produces less load on the network.

The forwarder sends the aggregated measurements onto the
network. The common measurement object is encoded into
the same network amenable format as in the ICP using XDR.
By having the same network format, the consumers of the
measurement data do not need to know if data has come
directly from and ICP or has come from an IAP. This allows
hierarchies of elements to be composed as an IAP can further
aggregate data from other IAPs if this is required.

The IAP Controller controls and manages the other IAP
components. It controls (i) the collector, by changing the
attributes of the network (such as IP address and port) that the
IAP listens to, (ii) the aggregation process, by managing the
aggregation engine and by passing in the aggregation specifier,
(iii) the filtering process, by changing the filter or adapting an
existing filter, (iv) the forwarder, by changing the attributes of
the network (such as IP address and port) that the IAP sends
to.

The aggregation engine itself is flexibile enough to be given
different aggregation specifications by the IAP Controller in
order to process the data in varying way. For example, it can
be told to wake up once an hour and select data for the last day,
and then apply an aggregation function. This is achieved using
a mechanism that relys on plugins. These plugins represent
code blocks which can be pre-defined, such as an average
aggregator, or can be defined to suit the need.

Information dissemination is done through the Informa-
tion Aggregation Points. As an application may request a
specific piece of information from an IAP, the deployment
location of the IAPs should also consider the locations and
the traffic requirements of the nodes retrieving information,
the Information Consumers. As well as requesting information,
an application has the option to subscribe to an event-based
notification service by setting an appropriate threshold to
a specific type of information. Whenever this threshold is
exceeded, the application is notified.
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C. IMO Controller
The IMO Controller has centralized functionality and is

responsible for the setup and optimization of the overlay. As
shown in Fig. 1, it takes input from a management application
regarding optimization requirements (e.g. cpu/memory, net-
work resources, or response time) and then configures the ICPs
and the IAPs via their respective controllers. The functionality
of the IMO Controller is realized by two components: (a)
the policy engine, and (b) the optimization algorithms. The
optimization algorithms can potentially implement a variety of
optimization tasks that involve performance related tradeoffs,
but in its current form it focuses on algorithms for the
placement of aggregation points. The policy engine provides
the necessary logic for the optimal configuration of the overlay
according to the optimization requirements and the properties
of the environment. These two components are discussed in
more detail in the following sections.

1) Optimization Algorithms: As mentioned above, the IMO
Controller can implement various optimization algorithms.
Examples include optimizing with respect to the network
protocol deployed (e.g. multicast for a large number of re-
ceivers), or, trading processing for communication cost by
using compression techniques. The optimization considered in
this work however, concerns the placement of the aggregation
points in the network. This is a process which is carried out
when the overlay is initially deployed, but can also be triggered
at run-time to react to changes in the network (as shown in Fig.
2) and to react to emerging requirements from the management
application.

We present below different node placement algorithms,
namely the: Random, Hotspot and two variations of the Greedy
Algorithm. Similar algorithms have been proposed in the area
of Content Distribution Networks [21].

Random Algorithm

The Random algorithm randomly chooses k IMO-nodes
from the set of N available nodes, based on a uniform
distribution. These k nodes become the IMO-nodes. It is a
very simple algorithm and thus produces insignificant process-
ing overhead. It is suitable for performance requirements to
optimize resource consumption in terms of CPU or Memory
utilization..

Hotspot Algorithm

The Hotspot algorithm places the k IMO-nodes near the
nodes that have more chances to produce significant commu-
nication overhead. A node is considered as a “hotspot” when
it is connected to a high number of nodes. In practice, node
density is the important factor. For each potential IMO-node,
a cost function F , that quantifies node density is calculated.
The cost function is elaborated as follows:

F (Ni) = a3 + b2 + c1 (1)

where a, b, c are the number of nodes that have one hop, two
hops and three hops distance from the node Ni, respectively.
We note that in certain environments (e.g., MANETs) the num-
ber of hops may not be the only parameter that expresses the

network distance between two nodes. For example, a similar
cost function may also include parameters such as network
latency, available energy, free memory, CPU power, etc. The
hotspot algorithm is suitable for performance requirements that
focus on the network overhead optimization.

Greedy Algorithm

The Greedy algorithm places IAPs one at a time. Every new
iteration considers all previous selections in place, choosing
the best node using a cost function that is based on the number
of hops. The selected cost function should ideally reflect
the performance requirements. For example, a requirement to
maximize network lifetime may change this cost function from
the number of hops to one that is a function of the available
energy. An adaptive cost function that reflects the diverse
node requirements in terms of resource availability and the
performance requirements is a subject of a future work.

The greedy A algorithm assumes that every node Ni is a
potential source of data. However, in reality only a subset of
N nodes are data sources for the IMO. We call this subset S.
Based on the assumption that the IMO is aware of the locations
of the information sources, the Greedy B algorithm considers
only the S nodes as information sources rather than every
potential node (i.e., N ). In our case, this information is passed
from the Management Application to the IMO through the
IMO Controller. In environments that all nodes are potential
information sources, the Greedy A algorithm may be used
instead.

We note that the Random and Greedy algorithms are suit-
able for both the initial and the dynamic placement of IAPs
because they can produce a result from a partial input. The
Hotspot algorithm may be used only for the initial placement,
because it requires a cost function calculation for each node
in the network.

2) Policy Engine: It is evident that there are a number of
parameters to be considered when configuring the informa-
tion management overlay, such as the size of the network,
the number of IAPs to be used, and the tolerance level of
information accuracy. Furthermore, some of these parameters
may change during the course of the systems operation and re-
configuration may be required to maintain optimized collection
of information. For this reason, our approach incorporates
policy-based management [22] as the mechanism to achieve
adaptation in a flexible and simplified manner. We have used
policies to drive the functional behavior of the overlay, based
on the requirements of the management application and the
properties of the environment. The policies are executed by
the IMO Controller and have an overlay-wide scope. Our
implementation is based on the Ponder2 framework [23] and
considers two policy types that: (a) deploy the appropriate
IAP placement algorithm, and, (b) set the accuracy level
at which the information is collected. The decision on the
placement algorithm in the first policy type is based on a set
of constraints that represent network properties and the op-
timization requirement from the management application. An
instance of such a policy is specified below in Ponder2 format,
where the topology size (medium - ”Med”), its type (dynamic
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- ”Dyn”), and the optimization requirement (response time
- ”Resp”) are encoded in the conditional part. The action
(execGreedy) executes a script that implements the Greedy
algorithm, passing the number of IAPs to be deployed (3 in
this case) as a parameter.

policy := root/factory/ecapolicy create.
policy event: root/event/deplIMO.
policy condition: [ :topolSize :topolType :optzType |

(topolSize=="Med") & (topolType=="Dyn") &
(optzType=="Resp") ].

policy action: [ root/plAlg execGreedy: 3 ].
root/policy at: "greedyAlg" put: policy.
policy active: true.

As mentioned in Section IIIB, the accuracy with which
information is transmitted has an impact on the communication
overhead. The IMO Controller can regulate this parameter on
both ICPs and IAPs by configuring their filter. The following
policy is enforced only if the management application requires
the optimization of network resources, and sets the accuracy
as a deviation percentage (5%).

policy := root/factory/ecapolicy create.
policy event: root/event/deplIMO.
policy condition: [ :optzType | optzType=="Net" ].
policy action: [ root/fltr setAcc: 5 ].
root/policy at: "filter" put: policy.
policy active: true.

The advantage of introducing interpreted logic in the form
of policies is that the behavior of the managed overlay can be
dynamically changed without modifying the underlying imple-
mentation. The filtering value can, for example, be adjusted
without interrupting the information collection process. In the
current implementation, and for evaluation purposes, policies
are manually triggered and the constraint parameter values are
represented by static variables. Part of the future work in this
area involves acquiring dynamic environment properties and
optimization requirements, and then executing the policies at
run-time. Furthermore, policy logic will also be introduced
within ICPs and IAPs controllers so that decisions can be taken
locally in a distributed fashion.

IV. EXPERIMENTAL ANALYSIS

In this section we evaluate different aspects of the IMO
infrastructure using both real experiments and simulations.
We implemented all basic functionalities of the IMO infras-
tructure including Information Collection Points that monitor
network and system resources, Information Aggregation Points
that perform dynamic placement, some sample Information
Consumers, and the policy-driven IMO Controller.

We performed the following tests:

• Impact of filtering mechanism, where we show how the
information accuracy can be traded for communication
cost.

• Impact of information source, where we show the im-
pact of different sources of information, including CPU
and memory sensors, and an emulated source (i.e., the
response-time emulator).

• Impact of AP placement algorithms, where we show
the impact on the communication overhead and their
processing cost in small-scale and large-scale networks.

Fig. 5. Simulation topology

We complemented our real experiments with simulations in
order to explore the impact of the placement algorithms in
large-scale topologies.

A. Experimental Setup

We deployed the IMO infrastructure on a test-bed that
consists of two SUN servers with 4 CPU cores (2.5 GHz
each) and 8GB of memory and one with 8 CPU cores (1.9
GHz each) and 32GB of memory. Each server hosts 10 virtual
machines using the XEN virtualization platform [24]. With
such a setup, we emulated a network that consists of 33
machines. In our experiments, each physical machine acts as
an emulated Autonomous System (AS).

In the real scenarios, we gradually increase the number
of physical machines from one to three, in order to show
the impact of our solution in different topology scales. In
these experiments, all the virtual machines act as information
sources. One Aggregation Point is deployed dynamically using
the AP placement algorithms and the Information Consumer
is hosted on the last physical machine of each experimental
run. Greedy B is the default placement algorithm used.

Here, we measure throughput at the Aggregation Points and
the Information Consumers and transmission time from the in-
formation collectors to the aggregation points. The Information
Collectors and Aggregation Points transmit a measurement
every 30 seconds, unless it is otherwise stated. We note that
the experimental scenarios were defined as appropriate inputs
to the IMO Controller and the corresponding policies.

In the simulation scenarios, we evaluated the proposed
IMO-node placement algorithms using the linear topology
shown in Fig. 5, matching the emulated topology in the test-
bed. We implemented the simulator using TCL and executed
the experiments on an Acer TravelMate 3022WTMi laptop
with 1GB of memory. In our implementation, we used the
Dijkstra’s shortest path algorithm for any node distance cal-
culation in hops.

For the simulations, we measure the average data transmit-
ted per hop (measured in Bytes / sec / hop) and the average
processing time for the IMO-node placement algorithm. The
former metric quantifies the communication and the latter the
processing cost.

In all experiments, we assume that the IMO is aware of
the graph of the network topology. This assumption is not
unreasonable, since topology is one of the most important
information aspects that need to be handled from such in-
frastructures.
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Fig. 6. Impact of Filtering on the Aggregation Point

Fig. 7. Impact of Filtering on the Information Consumer (rate 5 sec)

B. Real measurements

In the following scenarios, we tested the IMO infrastructure
in different conditions, focusing on different aspects each time.
We evaluated the statistical accuracy of our results by perform-
ing 10 runs and calculating the standard deviation. We did not
observe any large deviations. For example, in a scenario with 2
ASs and 20 VMs acting as information sources, the standard
deviation in the throughput measurements was just 3.4% of
the average throughput value. Now we present our results.

1) Impact of Information Filtering: As we can see in Fig.
6, the throughput at the AP is reduced significantly due to
the filtering algorithm. So, filtering can adjust the trade-off
between information accuracy and communication overhead.
The impact grows with more information sources and larger
topologies. In Fig. 7, we show the impact of filtering on the
throughput that reaches the information consumer, in case
the aggregation point transmits one measurement every 5 sec.
Again, filtering improves communication overhead. We note
that in certain cases, the communication overhead may be zero
(e.g., for 5% filtering and 3 ASs - Fig. 7), in the situation
where the deviation of the monitoring value never exceeds the
filtering specification.

2) Impact of Information Sources: In this scenario, we
show the impact of different information sources on the
throughput and transmission time. We use different infor-
mation sensors that monitor CPU utilization and Memory.
Additionally, we use a sensor that collects measurements
from a response-time emulator. As we can see in Fig. 8,
the type of information impacts on the communication cost.
In our case, the emulated source associates with much less
throughput than the CPU and memory sources. In the case of
the transmission time (see Fig. 9), the difference is cancelled
for larger topologies.

Fig. 8. Impact of Information Source on the Aggregation Point

Fig. 9. Impact of Information Source on the Aggregation Point

Fig. 10. Impact of Information Source on the Information Consumer

3) Impact of AP placement algorithms: In this scenario,
we evaluate the impact of the placement algorithms on the
communication cost. Here, we used the second version of
the Greedy algorithm. In our case (i.e., see Fig. 11), the
random placement of the AP often results to a position many
hops away from the information sources, which increases
significantly the communication overhead. On the other hand,
an aggressive placement algorithm, such as the hotspot, can
find the best location for the AP. In this scenario, the greedy
algorithm is a good choice too, because performs well and
is associated with less processing cost than the hotspot,
especially if the number of sources are less than the available
nodes. Larger topologies and numbers of APs are evaluated
using simulations. These results can be found below.

C. Simulation Results

We ran two series of simulations, consisting of 5 and 10
networks in the backbone line (i.e., Autonomous Systems
- ASs), respectively. As illustrated in Figure 5, 10 nodes
were connected to each AS. All of our simulations have
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Fig. 11. Impact of AP Placement Algorithm

Fig. 12. Communication Cost (5 ASs)

a non-deterministic nature. Consequently, we executed each
one 20 times using different initiation values. Each of our
figures depicts the average values of the particular metric.
In the figures, we indicate the standard deviation of our
measurements, every time it is not insignificant.

We randomly placed 10 ICPs in the topology, each of which
periodically transmit data (i.e., with a period of 1 sec) to
the nearest IAP (in number of hops). The data is collected
from the IAP, processed, and transmitted again to a node that
exploits this information (i.e., an Information Consumer). The
node that resolves information is also placed randomly in the
topology. In our scenario, we assume that each data packet
has the size of 100 bytes. The data transmission between the
AP and the Information Consumer has a period of 10 seconds,
assuming that the aggregated information requires lower data
transmission rates. In both scenarios, we ranged the number
of APs from 2 to 10.

The Fig. 13 and 15 show that the Random placement
algorithm is associated with the lower processing cost. This
result is consistent with the complexity of the algorithm that
is O (MN) [21]. However, the lower complexity comes with a
high communication cost (as in Fig. 12 and 14). The Hotspot
and Greedy B algorithms have similar complexity (see Fig. 13
and 15) but the Greedy B algorithm performs better in terms
of communication cost (as in Fig. 12 and 14). The Hotspot and
Greedy A algorithms produce almost the same communication
cost. However, the associated processing cost is significantly
higher for the Greedy A algorithm.

In general, the Greedy B algorithm performs better in terms
of communication and processing cost. In this example, the
Greedy B algorithm produces almost the same communication
cost with the Greedy A algorithm (see Fig. 14). However, the
latter does use 3 less APs.

Fig. 13. Processing Cost (5 ASs)

Fig. 14. Communication Cost (10 ASs)

Fig. 15. Processing Cost (10 ASs)

V. DISCUSSION & OPEN ISSUES

We consider that future work can be out in the following
areas:

• to evaluate IMO robustness with dynamic scenarios, e.g.,
dynamic topologies or information flow requirements.

• to enrich the IMO system with additional policy-driven
functionality, e.g., consider additional programmable pa-
rameters of individual placement algorithms.

• to add new optimization algorithms that focus on other
aspects of the information management, e.g., information
distribution, network protocol used etc.

Finally, to aid researchers in this area it is a goal to release
the IMO platform as an open-source software.

VI. CONCLUSIONS

This paper presents the design, the implementation, and
the optimization issues of an Information Management Over-
lay. This IMO is an inner component of the Autonomic
Management Architecture [4] proposed in the Autonomic
Internet project [3]. The IMO supports network management
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applications with information, thus acting as an enabler for
self-management functionality. We discuss different strategies
to regulate the information flow with respect to the existing
conditions and performance requirements. We validated our
proposal with real experiments and simulations.
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